O.P.Code: 23HS0836

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular & Supplementary Examinations November-2025 DISCRETE MATHEMATICS & GRAPH THEORY

(Common to CSIT, CSE, CIC, CCC, CIA, CAI, CSM, CAD)

	_	(Common to CSII, CSE, CIC, CCC, CIA, CAI, CSM, CAD)						
			ıx. Mar	k. Marks: 70				
(Answer all the Questions $10 \times 2 = 20$ Marks)								
1	a	Construct a truth table for $p \land (\neg q \land q)$.	CO1	L2	2M			
•	b	Define Duality law.	CO1	L1	2M			
	c	State Pigeon hole principle.	CO ₂	L1	2M			
	d	What is the Subgroup of a Group.	CO ₂	L1	2M			
	e	Define combination with example.	CO ₃	L1	2M			
	f	State Binomial theorem.	CO ₃	L1	2M			
	g	Find the sequence for the function $\frac{1}{1-ax}$	CO4	L2	2M			
	h	Solve $a_n - a_{n-1} - 2a_{n-2} = 0$	CO4	L2	2M			
	i	Define Bipartite graph with example.	CO5	L1	2M			
	j	State Euler formulae for plannar graph.	CO5	L1	2M			
		UNIT-I						
2	9	Define converse, inverse contra positive with an example.	CO1	L1	5M			
_	h	What is Principal disjunctive normal form? Obtain the Principal		L2	5M			
	~	disjunctive normal form of $\neg(p \rightarrow (q \land r))$						
		OR						
3		Define NAND & NOR and give their truth tables.	CO1	L1	5M			
	b	Show that $(\exists x) M(x)$ follows logically from the premises	CO1	L2	5M			
		$(\forall x) (H(x) \rightarrow M(x)) \text{ and } (\exists x) H(x)$						
		UNIT-II		т э	<i>=</i> N <i>(</i> (
4	a	Find how many integers between 1 and 60 that are divisible by 2 not by 3		L2	5M			
		and not by 5. Also determine the number of integers divisible by 5 not by 2, not by 3.	'					
	h	Define Lattices and write the properties of Lattices.	CO2	L1	5M			
	~	OR						
5	a	Show that the set of all roots of the equation $x^4 = 1$ forms a group under	CO2	L2	5M			
		multiplication.	CO2	т 2	EM			
	b	On the set Q of all rational numbers, operation * is defined by $a * b = a + b - ab$, Show that this operation Q forms a commutative monoid.	- CO2	LZ	5M			
		UNIT-III						
6	9	How many different license plates are there that involve 1,2 or 3 letters	s CO3	1.2	5M			
U	а	followed by 4 digits?	, 603		SIVI			
	b	Out of 5 men and 2 women, a committee of 3 is to be formed. In how	/ CO3	L2	5M			
		many ways can it be formed if at least one woman is to be included?						
		OR						
7	a	Find how many solutions are there for $x_1 + x_2 + x_3 = 17$, subject to the	e CO3	L2	5M			
	_	constraints $x_1 > 1, x_2 > 2, x_3 > 3$	002	т 2	<i>_</i>			
	b	Find the co-efficient of (i) x^3y^7 in $(x+y)^{10}$ $(ii)x^2y^4$ in $(x-2y)^6$	CO ₃	L2	5M			

a Find the sequence generated by the following generating functions

CO4 L2

 $(i)(2x-3)^3 (ii) \frac{x^4}{1-x}$

b Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$

CO4

L2 **4M**

6M

 $a_n - 9a_{n-1} + 20a_{n-2} = 0, n \ge 2 \text{ with } a_0 = -3, a_1 = -10, \text{ CO4}$ 9 Solve 10M using generating function.

UNIT-V

- a Define isomorphism. Explain Isomorphism of graphs with a suitable CO5 **5M** example.
 - b Give an example of a graph that has neither an Eulerian circuit nor a CO5 **5M** Hamiltonian cycle.

OR

- a Define K-regular graph and draw 3-regular and 4-regular graph. 11 5M
 - b Explain about complete bipartite graph and complete binary tree with CO5 **L2 5M** example.

*** END ***

